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Abstract
We investigate theoretically the electronic structure and transport for a two-level
quantum wire with Rashba spin–orbit coupling (SOC) under the irradiation of
an external laser field at low temperatures. The photon-induced transitions
between SOC-split subbands with the same lateral confinement quantum
number and between subbands with different confinement quantum numbers
are expected. Using the method of equation of motion (EOM) for Keldysh
nonequilibrium Green’s functions (NGF), we examine the time-averaged
density of states (DOS) and the spin-polarized conductance for the system with
photon polarization perpendicular to the wire direction. Through the analytical
analysis and some numerical examples, the interplay effects of the external laser
field and the Rashba SOC on both the DOS and the conductance of the system
are demonstrated and discussed. It is found that the external laser field can
adjust the spin polarization rate and the transport of the quantum wire system
with some appropriate Rashba SOC strengths.

1. Introduction

In recent years, the effects of SOC in semiconductor mesoscopic systems have attracted more
and more attention, since it has played an important role in the emerging field of spintronics
(see recent review article [1] and references therein) since the proposal of constructing an
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electronic analogue of an optic modulator using ferromagnetic contacts as the spin injector and
the detector [2]. Many fundamental and interesting phenomena, such as spin precession [3, 4],
spin accumulation [5, 6], spin (polarized) transport [7, 8] and spin Hall effect [9, 10], in the
systems with SOC have been investigated and are under further study now. Though the SOC
has its origin in relativistic effects, it is regarded as vital in some low-dimensional mesoscopic
semiconductor systems [11, 12].

Usually, two types of SOC are taken into account in the investigation for systems based on
a two-dimensional electron gas (2DEG) confined in a semiconductor heterostructure. They are
Rashba [11] and Dresselhaus [12] SOC, which can be described by the Hamiltonians

HR = h̄kR

m∗ (σx py − σy px) (1)

and

HD = h̄kD

m∗ (σy py − σx px), (2)

respectively, where m∗ is the effective electron mass and σ = (σx , σy, σz) is the vector
of the Pauli matrix. The strengths of the two types of SOC are measured in terms of
characteristic wavevectors kR and kD, respectively. For some semiconductor-based systems
(e.g. InAs quantum well), the Rashba term arising from the structure inversion asymmetry
in heterostructures [13, 14] is roughly one order magnitude larger than the Dresselhaus term,
which is due to the bulk inversion asymmetry [15]. Moreover, the strength of Rashba SOC can
be tuned by the external gate voltage [16], and its effect on the systems has been paid more
attention, particularly in the quasi-one-dimensional quantum wire system.

Mesoscopic systems with or without external magnetic field in the presence of SOC
have been studied extensively [3–10, 17]. Two years ago, two independent experiments on
(001)-grown n-type GaAs multiple quantum well structures had been done by using circularly
polarized infrared radiation [18] and two orthogonally polarized optical harmonic pulses [19],
respectively. The spin photon current [18] and the pure spin current [19] due to resonant
intersubband transitions have been observed in the absence of any external magnetic field.
Hereafter, for a single quantum well (2DEG) with SOC irradiated under in-plane linearly
polarized infrared irradiation, the spin-dependent density of state (DOS) and the density of spin
polarization has been calculated, and a pure spin current has been theoretically verified for the
system [20]. Further, a mechanism for spin-polarized photocurrent generation in a multimode
quantum wire, which is due to the combined effect of the Rashba SOC and a linearly polarized
in-plane microwave irradiation, has been proposed in the presence of a static in-plane magnetic
field [21]. On the other hand, the electron transport for a quantum wire under time-varying
electromagnetic (EM) field irradiation in the absence of SOC has been analysed previously by
means of the NGF [22] and the scattering matrix approach [23], respectively. However, further
confined low-dimensional systems, such as a two-level quasi-one-dimensional quantum wire or
quasi-zero-dimensional quantum dot with SOC under the irradiation of a time-dependent field,
have been studied rarely [21].

A mesoscopic two-level system (such as a two-level quantum wire or quantum dot) is
physically important since it has been proved to be very useful in describing many aspects
of interaction between an EM field and the electrons confined in a heterostructure, and in
application of solid-state electronic devices. Therefore, it is meaningful to investigate the
interplay effect between the SOC and the applied laser field for a two-level mesoscopic system.

In order to investigate the electronic structure and transport of a two-level quantum wire
with SOC under an intense laser field irradiation, in this paper we theoretically calculate the
time-averaged DOS and the conductance at low temperatures for the system. The interplay
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effects of different laser frequencies and Rashba SOC strengths on the electronic structure and
transport are investigated by using the nonequilibrium Keldysh formulism (NKF). Through the
analysis with a few numerical examples, we find some characteristics different from those for
the similar systems in previous works [20–23].

The remainder of the paper is organized as follows. In section 2, we introduce the model
Hamiltonian for our system and give the NKF straightforwardly, where the time-averaged DOS
and the conductance are calculated analytically. The numerical results and the discussion are
shown in section 3. Finally, section 4 concludes the paper.

2. Model and formalism

The NGF approach has been employed in recent decades to study a variety of problems beyond
the linear response regime [22]. Meir et al [24] derived a formula for the current through a
region of interacting electrons using the NKF. Changing the one-direction time axis into a loop
with two branches, four Green’s functions depending on the relative positions of ta and tb in
the loop can be defined. They are time-ordered, anti-time-ordered and two distribution Green’s
functions, respectively. However, only two of them are independent. We will use the approach
of the standard nonequilibrium Keldysh EOM in the present work.

Consider a quasi-one-dimensional system of electrons (a quantum wire) in the presence of
SOC and an external time-dependent laser field, the model Hamiltonian reads

H = p2

2m∗ + V (r) + Hso + V (t), (3)

where r = (x, y) and p = (px, py) are two-dimensional position and momentum vectors,
respectively. The SOC Hamiltonian Hso generally consists of HR and HD, while V (t) is the
potential from the interaction of the external time-dependent laser field with electrons in the
system. The electrons are confined in the y direction by an infinite square-well potential of
width a, i.e.,

V (r) =
{

0 (|y| < a/2)

∞ (|y| > a/2),
(4)

which can eliminate the possibility of SOC due to the effective electric field coming from the
nonuniformity of the confining potential [25].

To investigate the effects of SOC and the external field on the electron transport properties
by means of NKF, we rewrite Hamiltonian (3) in the second-quantized form. For this purpose,
we define that a†

ksα (aksα) creates (annihilates) an electron with wavevector k and a spin branch
s (s = ↑ and ↓, or + and −, which is the spin branch index corresponding to spin up and spin
down, respectively: see equation (11) for a detailed explanation) in mode α in either the left
(L) or the right (R) lead, and c†

kx ns (ckx ns) creates (annihilates) an electron in the nth transverse
mode |kx, n, s〉 with wavevector kx and a spin branch index s in the absence of SOC in the
quantum wire modelled as a two-level (n = 1, 2) system. For convenience, we choose [25]
the spin polarization axis n̂ = (cos ϕ, sin ϕ) to be along the effective magnetic field due to the
SOC for a wave propagating in the x-direction such that

|s〉 = 1√
2

(
se−iϕ/2

eiϕ/2

)
(5)

with ϕ ≡ arg[kD + ikR]. With these definitive operators and spin states, the Hamiltonian for a
laser-field-irradiated two-level quantum wire (connected to two electrode leads) in the presence
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of SOC reads

H =
∑

k,s,α∈L/R

εksαa†
ksαaksα +

∑
kx ,n,s

εns(kx)c
†
kx nsckx ns +

∑
k,kx ,n,s,α∈L/R

(T α
kkx nsa†

ksαckx ns + h.c.)

+
∑

kx ,n,n′,s,s ′
[γnn′βss ′ + Vnsn′s ′ cos(�t)]c†

kx nsckx n′s ′ , (6)

where εksα is the energy level with spin s and wavevector k in lead α, and

εns(kx) = h̄2

2m∗

[
(kx − skso)

2 +
(nπ

a

)2
]

− 
so (7)

is the nth sublevel in the wire with kso =
√

k2
R + k2

D and 
so = h̄2k2
so/2m. In Hamiltonian (6),

the coupling between the electrode leads and the wire with strength T α
kkx ns is represented by

the third term, and the last term describes the adiabatic electron–photon interaction in the
wire [22, 26] and the mixture of transverse modes due to SOC, where Vnsn′s ′ are the dipole
electron–photon interaction matrix elements (MEs) and � the incident laser frequency. Since
the frequencies of interest are in the range corresponding to wavelengths of the order of
hundreds of nanometres, the spatial variation of the field potential can be neglected. The SOC
mixes the transverse modes through the matrix element γnn′βss ′ , where

γnn′ = 4nn′

a(n2 − n′2)

{
(−1)

n+n′−1
2 (n �= n′)

0 (n = n′),
(8)

and according to the lateral confinement potential [25] βss ′ is the element of matrix

β = h̄2

m∗kso

[
2ikRkD k2

D − k2
R

k2
R − k2

D −2ikRkD

]
. (9)

In the above Hamiltonian we have neglected electron–electron interactions since their effect on
SOC can be plausibly taken into a renormalized SOC constant [27].

For simplicity, we focus on the Rashba SOC effect, i.e. let kD = 0. Furthermore, according
to the Dyson equation, the coupling between the electrode leads and the wire only adds a self-
energy term in the NGF, so we firstly calculate the Green’s function (GF) of the quantum wire
without considering the electrode leads. In this case the Hamiltonian of the quantum wire part
in the absence of EM field reads

Hwire =
∑

kx

[ε1↑(kx)c
†
kx 1↑ckx 1↑ + ε1↓(kx)c

†
kx 1↓ckx 1↓ + ε2↑(kx)c

†
kx 2↑ckx 2↑ + ε2↓(kx)c

†
kx 2↓ckx 2↓

+ εR(c†
kx 2↑ckx 1↓ + c†

kx 1↓ckx 2↑ − c†
kx 1↑ckx 2↓ − c†

kx 2↓ckx 1↑)], (10)

where εR = 8h̄2kR/(3m∗a). According to equation (5), here the spin-up state |↑〉 and the
spin-down state |↓〉 are the linear combination of the eigenstates of σz

|↑〉 = 1 − i

2

(
1
0

)
+ 1 + i

2

(
0
1

)
,

|↓〉 = −1 − i

2

(
1
0

)
+ 1 + i

2

(
0
1

)
,

(11)

with equal probability occupying the real spin-up and spin-down states in the original spin
space, respectively.

For definiteness, we consider the case of the applied incident laser polarized along the y
direction (perpendicular to the wire direction), hence the diagonal electron–photon interaction
MEs are simply zero in the dipole approximation. Also for simplicity in calculation we
assume phenomenologically that the off-diagonal electron–photon interaction MEs V1s2s ′ =
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V2s1s ′ = 1.0 as the free input parameters (dependent on incident laser intensity), and thus the
Hamiltonian (10) becomes

H ′
wire =

∑
kx

{ε1↑(kx)c
†
kx 1↑ckx 1↑ + ε1↓(kx)c

†
kx 1↓ckx 1↓ + ε2↑(kx)c

†
kx 2↑ckx 2↑ + ε2↓(kx)c

†
kx 2↓ckx 2↓

+ [ 1
2 (ei�t + e−i�t ) + εR](c†

kx 1↓ckx 2↑ + c†
kx 2↑ckx 1↓)

+ [ 1
2 (ei�t + e−i�t ) − εR](c†

kx 1↑ckx 2↓ + c†
kx 2↓ckx 1↑)

+ 1
2 (e

i�t + e−i�t )(c†
kx 1↑ckx 2↑ + c†

kx 2↑ckx 1↑ + c†
kx 1↓ckx 2↓ + c†

kx 2↓ckx 1↓)}. (12)

It is seen from equations (10) and (12) that the pure Rashba SOC induces spin-flip transitions
with equal probabilities (spin conserving) according to equation (6), while the applied laser
field may arouse unequal probability transitions for spin flip and spin conserving due to the
interplay between the Rashba SOC and the field. Our interest is to numerically find which kind
of transition is favourable for this system.

Next we employ the usually defined retarded GF [22, 24]

Gr
nsn′s ′(t2, t1) = 〈〈ckx ns(t2), ckx n′s ′(t1)〉〉r = −iθ(t2 − t1)〈{ckx ns(t2), ckx n′s ′(t1)}〉, (13)

then its corresponding Keldysh EOM is

i
∂

∂ t2
〈〈ckx ns(t2), ckx n′s ′(t1)〉〉r = δ(t2 − t1)〈{ckx ns(t2), ckx n′s ′(t1)}〉

+ 〈〈[ckx ns(t2), H ], ckx n′s ′(t1)〉〉r . (14)

Inserting system Hamiltonian (12) into (14) and transforming the variables to t2 − t1 and t1, and
then performing the Fourier transform to change the variable t2 − t1 into ω, we finally obtain
the diagonal MEs of the two retarded GFs without the coupling between the electrode leads
and the wire

{[ω − ε1/2↑(kx)][ω − ε2/1↓(kx)] − ε2
R}〈〈ckx 1/2↑, c†

kx 1/2↑〉〉r
ω = ω − ε2/1↓(kx), (15)

{[ω − ε1/2↓(kx)][ω − ε2/1↑(kx)] − ε2
R}〈〈ckx 1/2↓, c†

kx 1/2↓〉〉r
ω = ω − ε2/1↑(kx), (16)

[ω − ε1/2↑(kx)]〈〈ckx 1/2↑, c†
kx 1/2↑(t1)〉〉r

ω = 1 ∓ εR〈〈ckx 2/1↓, c†
kx 1/2↑(t1)〉〉r

ω

+ 1
2 ei�t1 [〈〈ckx 2/1↓, c†

kx 1/2↑(t1)〉〉r
ω+� + 〈〈ckx 2/1↑, c†

kx 1/2↑(t1)〉〉r
ω+�]

+ 1
2 e−i�t1 [〈〈ckx 2/1↓, c†

kx 1/2↑(t1)〉〉r
ω−� + 〈〈ckx 2/1↑, c†

kx 1/2↑(t1)〉〉r
ω−�], (17)

[ω − ε1/2↓(kx)]〈〈ckx 1/2↓, c†
kx 1/2↓(t1)〉〉r

ω = 1 ± εR〈〈ckx 2/1↑, c†
kx 1/2↓(t1)〉〉r

ω

+ 1
2 ei�t1 [〈〈ckx 2/1↑, c†

kx 1/2↓(t1)〉〉r
ω+� + 〈〈ckx 2/1↓, c†

kx 1/2↓(t1)〉〉r
ω+�]

+ 1
2 e−i�t1 [〈〈ckx 2/1↑, c†

kx 1/2↓(t1)〉〉r
ω−� + 〈〈ckx 2/1↓, c†

kx 1/2↓(t1)〉〉r
ω−�], (18)

for spin up and spin down, respectively. It is seen from equations (17) and (18) that the retard
NGF Gr

0 with frequency ω is coupled to the components with photon sideband frequencies of
ω + � and ω − � in connection with kso (the characteristic wavevector of Rashba SOC).

On the other hand, the self-energy describing the influence of the leads on the system can
be simply written as

�nn′ ≡ �
L/R
nn′ (ω) = 2π

∑
k,kx ,s

(T α
kkx ns)

∗T α
k,kx n′sδ(ω − εksα), (19)

with which one can construct the GF Gr = [(Gr
0)

−1 − i�]−1 for the whole system. If we
calculate the time-averaged NGF up to the second order, then at low temperatures the time-
averaged DOS is

DOS = − 1

π
Im[Tr(Gr (ω, ω))], (20)
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and the conductance has the Landauer-type form [22, 26]

G = e2

h
Tr[�L(ω)Ga(ω, ω)�R(ω)Gr (ω, ω)]. (21)

Here Gr (ω, ω) and Ga(ω, ω) represent the time-averaged retarded and advanced GFs,
respectively.

3. Numerical results and discussion

In the following, we present some numerical examples of the DOS and conductance calculated
according to equations (15)–(21) for the system. In our numerical examples, the physical
quantities are chosen to be those in InAs semiconductor heterostructures with Rashba SOC
characteristic energy 
so = 1.9 meV, and SOC constant α = 4.5 × 10−11 eV m, Rashba
characteristic wavevector kR = 2m∗α/h̄2 = 4.2×107 m−1, effective mass m∗ = 0.036me [21].
We have selected the hard-wall transverse confining potential with width a = 100 nm and the
unit of energy E∗ = ε1 = π2h̄2/(2m∗a2) = 1.0 meV (i.e. the first lateral level of the quantum
wire without SOC), the time unit t∗ = h̄/E∗ = 6.3 × 10−13 s and the frequency unit �∗ =
1/t∗ = 1.6 THz. With these units, the propagating longitudinal wavevector corresponding to
the nth transverse mode is kx = (ω − n2)1/2. In the wide-band approximation the real part
of the self-energy is negligible [22, 24–26], and we simply assume that �11 = �22 = 0.1
and �12 = �21 = 0.05. The choice of these typical parameters is based on the following
consideration [22]. Usually the strength of electron–photon interaction depends on the photon
intensity, polarization and the size of the quantum wire. Under the irradiation of a strong laser
with an electric field of the order (105–106) V m−1, the MEs are comparable to or several times
larger than the level spacing in the quantum wire with the width of order (10–100) nm, and
these quantities are physically realizable in recent experiments [18, 19].

We first consider the electronic structure of the system. It is commonly known that the
electronic energy spectrum is degenerate for the two spin orientations in the absence of SOC.
In the presence of SOC the energy spectrum (7) satisfies the condition εn,s(kx) = εn,−s(−kx)

in accordance with the time inversion symmetry. However, our interest is the interplay effect
of the external laser field and the Rashba SOC on the electronic structure and transport of
the system. Here we consider that the incident field is linearly polarized perpendicular to the
current direction (the wire direction); i.e., the off-diagonal MEs dominate the electron–photon
interaction. With the assumption of the off-diagonal MEs V12 = V21 = 1.0 (see equation (12))
and the incident laser frequency � = 0.5, in figure 1 we illustrate the time-averaged DOS as
a function of energy for the two different Rashba SOC strengths kR = 1/(2π) and kR = 1/π ,
respectively. We can see that the main peak around ω ∼ 1 is always obvious in the presence
of both Rashba SOC and laser field. This is because the electrons are populated at energy
level ε1↑ ∼ 1.01 rather than ε1↓ ∼ 1.25 with single photon absorption. In the case of weak
Rashba SOC strength as shown in figure 1(a), there are two additional photon resonance peaks
at ω = 1.6 and 4.6 for spin up (solid line), while for spin down (dashed line) there are three
additional resonance peaks at ω = 4.58, 0.75 and 0.65 with a pattern of oscillation in the
range of 0.76 < ω < 1. Nevertheless, with the increase of the Rashba SOC strength shown
in figure 1(b), for spin up the two photon resonance peaks are shifted from ω = 1 and 4 to
ω = 0.63 and 3.4, respectively, while for spin down there only two resonance peaks occurring
at ω = 0.63 (superposed with that for spin up) and 3.5 without an oscillatory pattern. However,
it seems that the other main peak around ω ∼ 4 makes sense in this strong Rashba SOC case.
Because the single photon energy � is much smaller than the quantum wire sublevel spacing

ε, the resonance peaks here belong to the transitions between Rashba SOC-split subbands
with the same lateral confinement quantum number [21].
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Figure 1. The time-averaged DOS (in arbitrary units) as a function of total energy (∼ω, in the
unit of ε1 = 1.0 meV) with electron–photon interaction off-diagonal matrix elements V1s2s′ =
V2s1s′ = 1.0 for the two different Rashba SOC strengths (a) kR = 6.74 × 106 m−1 and
(b) kR = 1.35 × 107 m−1, where the incident laser frequency is � = 0.8 THz and the solid
(dashed) line represents the spin up (down), shifted 0.1 upward for clarity.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ω

D
O

S

(a) 

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ω

D
O

S

(b) 

Figure 2. The time-averaged DOS (in arbitrary units) as a function of total energy with the same
system parameters and line presentation as in figure 2, except that the incident laser energy is
� = 4.8 THz.

In order to determine the transitions between subbands with different confinement quantum
numbers, in figure 2 we increase the incident frequency to � = 3 but with the same two
different Rashba SOC strengths as in figure 1. As shown in figure 2 the time-averaged DOS for
spin up (solid lines) has no transition resonance peaks in both weak and strong Rashba SOC
cases, while for spin down there are several sharp resonance transition peaks at ω = 0.75,
4.1, 4.5 and 4.6 in the weak Rashba SOC case (see the dashed line in figure 2(a)) and an
oscillatory pattern with no resonance peak (dashed line in figure 2(b)) in the strong Rashba
SOC case. This result implies a rule of possible transition that the transition probabilities are
much larger for this condition. We believe that some of the resonance peaks in figure 2(a)
can be identified with the photon-induced transitions between subbands with different quantum
numbers [21–23]. Because both spin-flip and spin-conserving transitions are modulated by the
strengths of Rashba SOC and laser field, it seems that the strong strength of Rashba SOC in the
higher laser frequency case is not favourable for the transitions between subbands with different
quantum numbers.
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Figure 3. The plotted conductance G (in the unit of e2/h) as a function of total energy (∼ω,
in the unit of ε1 = 1.0 meV) without laser field for the two different Rashba SOC strengths (a)
kR = 6.74 × 106 m−1 and (b) kR = 1.35 × 107 m−1, where the solid (dashed) line represents the
spin up (down), shifted 0.1 upward for clarity.
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Figure 4. The time-averaged conductance G (in the unit of e2/h) as a function of total energy with
the same system parameters and line presentation as in figure 1.

Next we turn our attention to the conductance of the system. The conductance (in the unit
of e2/h) as a function of energy (∼ω, in the unit of ε1) of the system without external laser field
in the presence of weak and strong Rashba SOC is illustrated in figure 3. There are two major
peaks in the conductance curves, as a consequence of the two subband level structure of the
wire. In particular, the conductance difference for the two spin orientations in figure 3 is very
small and consistent with the analytical prediction from the energy spectrum. One also notes
that the conductance peaks are asymmetric near the two subband levels due to the spin–orbit
interaction [26].

The time-averaged conductance of the system irradiated under a transversally polarized
laser field in the presence of Rashba SOC is shown in figure 4 with � = 0.5. Corresponding
to the resonance states in figure 1(a), the time-averaged conductance in figure 4(a) shows some
peaks with the height of ∼e2/h. When the incident electron energy is about ω = 0.65 and 0.75,
we note that the conductance is nearly e2/h for spin down while that for spin up is nearly zero;
when the incident electron energy is increased to ω = 1.6, there is a sharp conductance peak
for spin up while that for spin down is about zero. Therefore, with a largest spin polarization
in figure 1(a), a spin filter may be devised in the case of appropriate incident electron energy
and Rashba SOC strength. Figure 4(b) shows the time-averaged conductance corresponding
to figure 1(b) in the strong Rashba SOC case, from which one can see more photon resonance
peaks (especially in lower energy range) than in the weak Rashba SOC case. Furthermore,
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Figure 5. The time-averaged conductance G (in the unit of e2/h) as a function of total energy with
the same system parameters and line presentation as in figure 2.
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Figure 6. The time-averaged DOS and spin polarization rate as a function of kR (proportional to
the strength of Rashba SOC, in the unit of 4.2 × 107 m−1) for a fixed incident electron energy
ω = 2.5 meV (a) without and (b) with a transversally polarized laser field (� = 0.8 THz), with the
solid line (shifted 0.1 upward for clarity) for spin-up and the dash–dotted line for spin-down DOS,
respectively. The dashed line represents the spin polarization rate.

when the external laser frequency is increased to 3.0 the time-averaged conductance of the
system with the two different Rashba SOC strengths is illustrated in figure 5. Due to the
intersubband resonance states in figure 2(a), there are more sharp resonance transition peaks
in a higher energy range (see figure 5(a)) for the spin-down electrons (see the explanation for
figure 2(a)), while in the strong Rashba SOC case the conductance curves for both spin up and
down show only the two main peaks (see figure 5(b)) as in figure 2(b). Maybe in this case the
Rashba SOC is too strong to produce quantum transitions for the system.

Finally, the time-averaged DOS (solid line for spin up and dash–dotted line for spin down)
and the spin polarization rate [20] (dashed line) with a fixed incident electron energy (ω = 2.5)
as a function of the characteristic wavevector kR (proportional to the strength of Rashba SOC)
without or with a transversally polarized external laser field (� = 0.5) are demonstrated in
figure 6(a) and (b), respectively. The electronic energy spectrum is degenerate for spin up and
spin down when kR = 0 in both cases as expected (see the solid and dash–dotted lines in
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figure 6). In the case without a laser field as shown in figure 6(a), the spin polarization rate
(dashed line) is about 17% when kR = 0.02, and it can reach 95% when kR = 0.04. Under the
irradiation of the laser field, as shown in figure 6(b), the spin polarization rate increases to 60%
and 100% around kR = 0.02 and 0.04, respectively. Moreover, there are several additional
peaks of spin polarization rate in the range of 0.05 < kR < 0.25 with laser field, while
in the case without laser field as shown in figure 6(a) the spin polarization rate is smoothly
low in this range of kR. Therefore, it seems that the external laser field can enhance the spin
polarization rate for a quantum wire system with an appropriate Rashba SOC strength, which
can be adjusted through the controllable lateral electrodes [16].

4. Conclusion

In summary, using the method of EOM for the Keldysh NGF, we have investigated theoretically
the electronic structure and transport properties of a two-sublevel quantum wire irradiated under
a transversally polarized external laser field in the presence of the Rashba SOC. The time-
averaged DOS and conductance for spin-up and spin-down electrons in the case of the off-
diagonal electron–photon interaction dominating the process are calculated analytically, and
are demonstrated numerically with two different Rashba SOC strengths and laser frequencies,
respectively. It is found that the external laser field can enhance the spin polarization rate
for the system with some particular Rashba SOC strengths. An all-electrical nonmagnetic
spintronic device may be desirable under an appropriate choice of external control parameters.
However, the experimental observation for this proposal and further theoretical investigation
if the impurity, phonon or electron–electron interaction are taken into account are worth
carrying out.
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